35 research outputs found

    Data locality via coordinated caching for distributed processing

    Get PDF

    Improving Noisy Hybrid Quantum Graph Neural Networks for Particle Decay Tree Reconstruction

    Get PDF
    With the emergence of the research field of Quantum Machine Learning, interest in finding advantageous real-world applications is growing as well. However, challenges concerning the number of available qubits on Noisy Intermediate Scale Quantum (NISQ) devices and accuracy losses due to hardware imperfections still remain and limit the applicability of such approaches in real-world scenarios. Therefore, for simplification, most studies assume nearly noise-free conditions as they are expected with logical, i.e. error-corrected, qubits instead of real qubits provided by hardware. However, the number of logical qubits is expected to scale slowly as they require a high number of real qubits for error correction. This is our motivation to deal with noise as an unavoidable, non-negligible problem on NISQ devices. As an application, we use the example of particle decay tree reconstruction as a highly complex combinatoric problem in High Energy Physics. We investigate methods to reduce the noise impact of such devices and propose a hybrid architecture that extends a classical graph neural network by a parameterized quantum circuit. While we have shown that such a hybrid architecture enables a reduction of the amount of trainable parameters compared to the fully classical case, we are now specifically interested in the actual performance in more realistic, i.e. noise prone scenarios. Using simple synthetic Decay Trees, we train the network in classical simulations to allow for efficient optimization of the parameters. The trained parameters are validated in noisy simulations based on devices by "IBM Quantum" and are used in interpretability and significance studies, enabling improvements in the accuracy on real devices

    Transparent Integration of Opportunistic Resources into the WLCG Compute Infrastructure

    Get PDF
    The inclusion of opportunistic resources, for example from High Performance Computing (HPC) centers or cloud providers, is an important contribution to bridging the gap between existing resources and future needs by the LHC collaborations, especially for the HL-LHC era. However, the integration of these resources poses new challenges and often needs to happen in a highly dynamic manner. To enable an effective and lightweight integration of these resources, the tools COBalD and TARDIS are developed at KIT. In this contribution we report on the infrastructure we use to dynamically offer opportunistic resources to collaborations in the World Wide LHC Computing Grid (WLCG). The core components are COBalD/TARDIS, HTCondor, CVMFS and modern virtualization technology. The challenging task of managing the opportunistic resources is performed by COBalD/TARDIS. We showcase the challenges, employed solutions and experiences gained with the provisioning of opportunistic resources from several resource providers like university clusters, HPC centers and cloud setups in a multi VO environment. This work can serve as a blueprint for approaching the provisioning of resources from other resource providers

    Student Experiences With an International Public Health Exchange Project

    Get PDF
    With growing interconnectivity of healthcare systems worldwide and increased immigration, inappropriate cultural and role assumptions are often seen when cultures clash within a country or when there is practice across country boundaries in times of disaster and during international travel. To increase students' multicultural awareness and work experiences abroad, the authors describe a 7-school, 5-country international student exchange project. The authors also share the students' evaluations of their experiences as they are challenged to erase boundaries and embrace nursing across countries. Participating faculty describe the process, challenges, and keys to success found in creating and living this international project. Students involved in the exchange process evaluate the learning opportunities and challenges and the joy of coming together as newfound colleagues and friends

    A multidisciplinary stroke clinic for outpatient care of veterans with cerebrovascular disease

    Get PDF
    Background: Managing cerebrovascular risk factors is complex and difficult. The objective of this program evaluation was to assess the effectiveness of an outpatient Multidisciplinary Stroke Clinic model for the clinical management of veterans with cerebrovascular disease or cerebrovascular risk factors. Methods: The Multidisciplinary Stroke Clinic provided care to veterans with cerebrovascular disease during a one-half day clinic visit with interdisciplinary evaluations and feedback from nursing, health psychology, rehabilitation medicine, internal medicine, and neurology. We conducted a program evaluation of the clinic by assessing clinical care outcomes, patient satisfaction, provider satisfaction, and costs. Results: We evaluated the care and outcomes of the first consecutive 162 patients who were cared for in the clinic. Patients had as many as six clinic visits. Systolic and diastolic blood pressure decreased: 137.2 ± 22.0 mm Hg versus 128.6 ± 19.8 mm Hg, P = 0.007 and 77.9 ± 14.8 mm Hg versus 72.0 ± 10.2 mm Hg, P = 0.004, respectively as did low-density lipoprotein (LDL)-cholesterol (101.9 ± 23.1 mg/dL versus 80.6 ± 25.0 mg/dL, P = 0.001). All patients had at least one major change recommended in their care management. Both patients and providers reported high satisfaction levels with the clinic. Veterans with stroke who were cared for in the clinic had similar or lower costs than veterans with stroke who were cared for elsewhere. Conclusion: A Multidisciplinary Stroke Clinic model provides incremental improvement in quality of care for complex patients with cerebrovascular disease at costs that are comparable to usual post-stroke care

    A Multi-Center, Qualitative Assessment of Pediatrician and Maternal Perspectives on Rotavirus Vaccines and the Detection of Porcine circovirus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In 2010, researchers using novel laboratory techniques found that US-licensed rotavirus vaccines contain DNA or DNA fragments from <it>Porcine circovirus </it>(PCV), a virus common among pigs but not believed to cause illness in humans. We sought to understand pediatricians' and mothers' perspectives on this finding.</p> <p>Methods</p> <p>We conducted three iterations of focus groups for pediatricians and non-vaccine hesitant mothers in Seattle, WA, Cincinnati, OH, and Rochester, NY. Focus groups explored perceptions of rotavirus disease, rotavirus vaccination, and attitudes about the detection of PCV material in rotavirus vaccines.</p> <p>Results</p> <p>Pediatricians understood firsthand the success of rotavirus vaccines in preventing severe acute gastroenteritis among infants and young children. They measured this benefit against the theoretical risk of DNA material from PCV in rotavirus vaccines, determining overall that the PCV finding was of no clinical significance. Particularly influential was the realization that the large, randomized clinical trials that found both vaccines to be highly effective and safe were conducted with DNA material from PCV already in the vaccines.</p> <p>Most mothers supported the ideal of full disclosure regarding vaccination risks and benefits. However, with a scientific topic of this complexity, simplified information regarding PCV material in rotavirus vaccines seemed frightening and suspicious, and detailed information was frequently overwhelming. Mothers often remarked that if they did not understand a medical or technical topic regarding their child's health, they relied on their pediatrician's guidance.</p> <p>Many mothers and pediatricians were also concerned that persons who abstain from pork consumption for religious or personal reasons may have unsubstantiated fears of the PCV finding.</p> <p>Conclusions</p> <p>Pediatricians considered the detection of DNA material from PCV in rotavirus vaccines a "non-issue" and reported little hesitation in continuing to recommend the vaccines. Mothers desired transparency, but ultimately trusted their pediatrician's recommendation. Both vaccines are currently approved for their intended use, and no risk of human PCV illness has been reported. Communicating this topic to pediatricians and mothers requires sensitivity to a broad range of technical understanding and personal concerns.</p

    Essential Role of Chromatin Remodeling Protein Bptf in Early Mouse Embryos and Embryonic Stem Cells

    Get PDF
    We have characterized the biological functions of the chromatin remodeling protein Bptf (Bromodomain PHD-finger Transcription Factor), the largest subunit of NURF (Nucleosome Remodeling Factor) in a mammal. Bptf mutants manifest growth defects at the post-implantation stage and are reabsorbed by E8.5. Histological analyses of lineage markers show that Bptf−/− embryos implant but fail to establish a functional distal visceral endoderm. Microarray analysis at early stages of differentiation has identified Bptf-dependent gene targets including homeobox transcriptions factors and genes essential for the development of ectoderm, mesoderm, and both definitive and visceral endoderm. Differentiation of Bptf−/− embryonic stem cell lines into embryoid bodies revealed its requirement for development of mesoderm, endoderm, and ectoderm tissue lineages, and uncovered many genes whose activation or repression are Bptf-dependent. We also provide functional and physical links between the Bptf-containing NURF complex and the Smad transcription factors. These results suggest that Bptf may co-regulate some gene targets of this pathway, which is essential for establishment of the visceral endoderm. We conclude that Bptf likely regulates genes and signaling pathways essential for the development of key tissues of the early mouse embryo
    corecore